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Course topics

1 Static games
2 Zero-sum games
3 Potential games
4 Dynamic games, dynamic programming principle
5 Dynamic games, dynamic programming for games
6 Dynamic games, linear quadratic games, Markov games
7 Convex games, Nash equilibria characterization
8 Convex games, Nash equilibria computation
9 Auctions
10 Bayesian games
11 Learning in games
12 Extensive form games
13 Feedback games in extensive form
14 Final project presentations
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Plan of today’s lecture

Game play: custom game
Math review: See hand-written notes in class

I fill in the gap: proof of existence of mixed strategy NE in finite action games
I review: results on linear program basic solution
I fill in the gap: proof of completely mixed NE computation from last lecture

Project information
Zero-sum games
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Review Exercise: Custom Declaration

You are arriving at Geneva international airport
and have brought some food from abroad

Declaring the food costs 10 CHF
The fine for not declaring it is 20 CHF
Customs can stop you, but that has a
personnel cost of 1 CHF.

Exercise
1 Is there a pure strategy Nash Equilibrium?
2 What are the security strategies for each player?
3 How would you compute a mixed strategy Nash Equilibrium?

 Declare Smuggle

Check (1, 10) (�19, 20)
Don’t check (0, 10) (0, 0)

�
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Two-Person Zero-Sum Games

Zero-sum games
Two-person games in which the two players have opposite payo�s.

Static game with B = �A (we only indicate one matrix, A)

Column player’s actions

Ro
w

pl
ay

er
’s

ac
tio

ns a11 a12 a1n

a21 a22 a2n
...

am1 am2 amn

Payo� matrix
Row player loses aij

Column player gains aij

Row player minimizes outcome V
Column player maximizes outcome V

Why?
Zero-sum games model a large number of practical applications: robust
optimization and control, chess, tic-tac-toe
Nash equilibria in zero-sum games have many useful properties
Nash equilibria in zero-sum games are much easier to compute
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Examples we have seen

Consider only one round of the game.

A =

2

666666664

Rock Paper Scissors

Rock

Paper

Scissors

3

777777775

Matching pennies
 Head Tail

Head (1,�1) (�1, 1)
Tail (�1, 1) (1,�1)

�
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Security levels and strategies

The security level of P1 (minimizer) is defined by

V := min
i2{1,...,n}

max
j2{1,...,m}

aij

V is the best possible outcome (lowest number) that P1 can guarantee himself, for
any adversarial choice P2 can make.

The security strategy of P1 (minimizer) is defined by

ī 2 argmin
i2{1,...,n}

max
j2{1,...,m}

aij

Exact same definition as in general non-zero-sum games.
Remember: security levels do not depend on the other players’ outcome matrix.

However, this time the other player is truly adversarial (zero-sum)!
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Security levels and strategies

The security level of P2 (maximizer) is defined by

V := max
j2{1,...,n}

min
i2{1,...,m}

aij

V is the best possible outcome (highest number) that P2 can guarantee himself,
for any adversarial choice P1 can make.

The security strategy of P2 (maximizer) is defined by

j 2 arg max
j2{1,...,m}

min
i2{1,...,n}

aij

Just a di�erent formulation of the same definition, for B = �A
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Security levels and strategies

Min-Max Property
For every finite matrix A, the following properties hold:
(i) Security levels are well defined and unique
(ii) Both players have security strategies (not necessarily unique)
(iii) The security levels always satisfy

P2z }| {
V := max

j2{1,...,n}
min

i2{1,...,m}
aij 

P1z }| {
V := min

i2{1,...,m}
max

j2{1,...,n}
aij
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Proof: V  V for all matrices A

We will show a more general statement: Let Y ⇢ Rn and Z ⇢ Rn, J : Y ⇥ Z ! R.

Min-Max Property for General functions
The sup-inf inequality holds: supz2Z infy2Y J(y, z)  infy2Y supz2Z J(y, z).
Furthermore, if Y, Z are closed and bounded and J is continuous then
maxz2Z miny2Y J(y, z)  miny2Y maxz2Z J(y, z).

Proof
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Exercise: Rock-Paper-Scissors

What are the security levels of the
Rock-Paper-Scissors game?
What is the gap between V and V?
What are the security strategies?
What is the outcome if both players
play a security strategy?
Given a matrix A, how do you
compute V and V in Matlab?

Vover = min(max(A’))

Vunder = max(min(A))

Competence
Evaluate fundamental quantities in a given game and verify that they are
compatible with what the theory says.
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Example: Feedback Control

An engineer must choose a proportional feedback controller gain, Kp, for a system
made with components specified to coarse tolerances. For such a resistor R in the
system, the resulting feedback performance metric (to be minimized) is as shown:

Nature

R = 3.5⌦ R = 4.0⌦ R = 4.5⌦

En
gi

ne
er

Kp = 1 6.0 4.0 3.0
Kp = 5 5.0 4.0 3.5

Kp = 10 +1 20.0 2.0

What are V ,V , i, j?
What is the interpretation in control design terms?
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Nash equilibrium in zero-sum games

Given a zero-sum game described by the payo� matrix A, we say that the pair of
actions �i⇤ 2 � and �j⇤ 2 ⌃ are a Nash Equilibrium if

ai⇤ j⇤  aij⇤ 8i = 1, . . . ,m (lowest outcome of column j⇤)

and
ai⇤ j⇤ � ai⇤ j 8j = 1, . . . , n (highest outcome of row i⇤)

Also known as saddle-point equilibrium

ai⇤ j  ai⇤ j⇤  aij⇤

8i 2 {1, . . . ,m}, 8j 2 {1, . . . , n}
We call V⇤ := ai⇤ j⇤ the saddle-point value.
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Saddle-point and security levels

Not all zero-sum games have a saddle point (think of Rock-Paper-Scissors).

We can exactly characterize the zero-sum games that have a saddle point.

Theorem (Saddle-point and security levels)
A zero-sum game defined by A has a saddle-point equilibrium if and only if

P2z }| {
V := max

j2{1,...,n}
min

i2{1,...,m}
aij =

P1z }| {
V := min

i2{1,...,m}
max

j2{1,...,n}
aij

and V = V is the saddle-point value.

Moreover, if i and j are security strategies, then (i, j) is a saddle-point equilibrium.

Extremely simple Matlab test: max(min(A)) == min(max(A’))
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Proof: Saddle-point and security levels

We will break it into 2 parts, “)” and “(”

Start with “(”: if a (Nash equilibrium) saddle-point exists, then V = V .

By definition of a saddle-point, ai⇤ j

(ii)
z}|{
 ai⇤ j⇤

(i)
z}|{
 aij⇤ , 8i, j holds

ai⇤ j⇤ =|{z}
(i)

min
i

aij⇤  max
j

min
i

aij = V

ai⇤ j⇤ =|{z}
(ii)

max
j

ai⇤ j � min
i

max
j

aij = V

We just showed that that V  V .
From the previous proposition we have that V  V .
Therefore it needs to be V = V .
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Proof: Saddle-point and security levels

Let us prove “)”: if V = V , then a Nash equilibrium (saddle point) exists.

Consider the two security strategies i and j. We have that

V = min
i

max
j

aij = max
j

aij and V = max
j

min
i

aij = min
i

aij

By definition of min and max, we have

V = min
i

aij  aij  max
j

aij = V

Because V = V , then these inequalities must be equalities:

min
i

aij = aij = max
j

aij .

Hence, aij  aij  aij , and (i, j) is a saddle point (Nash equilibrium).
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Value of a game and order interchangeability

Remember: security strategies are not unique

In the theorem we showed that if (i, j) is a saddle-point equilibrium then its value is
V⇤ = V = V .

Important consequences follow (only for zero-sum games!)

Value of a game
All saddle-point equilibria (Nash equilibria) of a zero-sum game have the same
value V⇤, which we denote as the value of the game.

Order interchangeability
If (i⇤1 , j⇤1 ) and (i⇤2 , j⇤2 ) are saddle-point equilibria for a zero-sum game, then (i⇤1 , j⇤2 )
and (i⇤2 , j⇤1 ) are also saddle-point equilibria.
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Mixed Strategies

Let us recall the definition of mixed strategies.

A mixed strategy for P1 is a vector of numbers (y1, . . . , ym) chosen from the simplex

Y =
n
(y1, . . . , ym) :

mX

i=1
yi = 1, yi � 0, i = 1, . . . , n

o

where yi is the probability with which P1 selects action i 2 {1, . . . ,m}

A mixed strategy for P2 is a vector (z1, . . . , zn) chosen from the simplex

Z =
n
(z1, . . . , zn) :

nX

j=1
zj = 1, zj � 0, j = 1, . . . , n

o

where zj is the probability with which P2 selects action j 2 {1, . . . , n}
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Mixed security strategies

The mixed security level for P1 (the minimizer) is defined as

Vm := min
y2Y

max
z2Z

y>Az

= min
y2Y

max
z2Z

mX

i=1

nX

j=1
yizjaij

A mixed security strategy is any

y 2 argmin
y2Y

max
z2Z

y>Az

Such a y minimizes the expected game value for the worst possible choice of
mixed strategy z that P2 can make.
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Mixed security strategies

The mixed security level for P2 (maximizer) is defined as

Vm := max
z2Z

min
y2Y

y>Az

= max
z2Z

min
y2Y

nX

i=1

mX

j=1
yizjaij

A mixed security strategy is any

z 2 argmax
z2Z

min
y2Y

y>Az

Such a z maximizes the expected game value for the worst possible choice of
mixed strategy y that P1 can make.
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Background for computing mixed security strategies

If X is the simplex defined as follows:

X :=

(
x 2 Rn :

nX

i=1
xi = 1, xi � 0, i = 1, . . . , n

)

X

x1

x2

x3

1

1

1

Then these two optimization problems are equivalent

max
x2X

nX

i=1
xiai () max

i2{1,...,n}
ai

since the optimizer x⇤ lies at a vertex of the simplex X .
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Computing the mixed security level

Vm = min
y2Y

max
z2Z

mX

i=1

nX

j=1
yizjaij

Do you have to search the max in the entire simplex Z?

for a fixed y max
z2Z

mX

i=1

nX

j=1
yizjaij = max

j

mX

i=1
yiaij

In other words, the worst case is always a pure strategy of Player 2.
How can we use the above to compute Vm and y?
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Computing the mixed security level via LP

Vm := min
y2Y

max
z2Z

mX

i=1

nX

j=1
yizjaij = min

y2Y
max

j

 mX

i=1
yiaij

!

which is equivalent to the following linear program

min
y,Vm

Vm

subject to
mX

i=1
yiaij  Vm, j = 1, . . . , n

y 2 Y, Vm 2 R

or in compact form

min
y,Vm

Vm

subject to A>y  Vm1
y 2 Y, Vm 2 R

where 1 = (1, . . . , 1)> 2 Rn is the vector of ones.
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Computing the mixed security level via linear programming (LP)
% def ine the game
m = 3; n = 2;
A = rand (m, n ) ;

% evaluate s e c u r i t y l e v e l s
Vover = min (max(A � ) ) ;
Vunder = max( min (A) ) ;
Vover==Vunder % check i f a pure NE e x i s t s

% set up the LP f o r f i n d i n g the mixed NE
f = [ zeros (m, 1 ) ; 1 ] ; % o b j e c t i v e f u n c t i o n
LB = [ zeros (m, 1 ) ; ≠ i n f ] ; % lower bound
UB = [ ones (m, 1 ) ; i n f ] ; % upper bound
Aeq = [ ones (m, 1 ) ; 0 ] � ; % e q u a l i t y c o n s t r a i n t s
beq = 1;
Ain = [A � , ≠1�ones ( n , 1 ) ] ; % i n e q u a l i t y c o n s t r a i n t s
b in = zeros ( n , 1 ) ;

[ yopt , V m ] = l i n p r o g ( f , Ain , bin , Aeq , beq , LB ,UB) ;

Exercise 1
Write the code for finding the mixed Nash equilibrium strategy of the second
player, z⇤. Show that alternatively, you can use the dual of the above linear
program to find z⇤.
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Min-Max Property

Min-Max Property
For every (finite) matrix A, the following properties hold:

Average security levels are well defined and unique
Both players have mixed security strategies (not necessarily unique)
The average security levels always satisfy the following inequalities:

V|{z}
max

j
min

i
aij

 Vm|{z}
max
z2Z

min
y2Y

y>Az

 Vm|{z}
min
y2Y

max
z2Z

y>Az

 V|{z}
min

i
max

j
aij

The result is partly intuitive, and can be proven similarly to the previous results.
We will prove the first and the second inequalities.
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Min-Max Property Proof (1)

Let us prove that
V|{z}

max
j

min
i

aij

 Vm|{z}
max
z2Z

min
y2Y

y>Az

We saw that the min of a linear function over a simplex is always achieved at one
of the vertices (corners), and therefore

max
z2Z

min
y2Y

y>Az = max
z2Z

min
y2Y

mX

i=1

nX

j=1
aijyizj = max

z2Z
min

i2{1,...,m}

� nX

j=1
aijzj

�

If we “restrict” the maximization from the simplex Z to only it’s corners
(j 2 {1, . . . , n} pure strategies), we necessarily obtain a lower value. Therefore

max
z2Z

min
i2{1,...,m}

� nX

j=1
aijzj

�
� max

j2{1,...,n}
min

i2{1,...,m}
aij

which completes this part of the proof.
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Min-Max Property Proof (2)

How would you verify the next inequality? Vm|{z}
max
z2Z

min
y2Y

y>Az

 Vm|{z}
min
y2Y

max
z2Z

y>Az

?
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Mixed Strategy Equilibrium

Mixed Nash equilibrium for zero-sum games
A pair of strategies (y⇤, z⇤) 2 Y ⇥ Z is called a mixed-strategy saddle-point
equilibrium (or Nash equilibrium) if

y⇤>Az⇤  y>Az⇤, 8y 2 Y (the minimizer)

y⇤>Az⇤ � y⇤>Az, 8z 2 Z (the maximizer)
y⇤>Az⇤ is called the saddle point value.
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Mixed Saddle Point vs. Security Levels

We proved earlier that in the case of pure strategies a pure saddle-point
equilibrium exists if and only if V = V .

An analogous result holds for mixed strategies, and can be proved in a very
similar fashion.

Theorem (Mixed saddle point and mixed security levels)
A zero-sum game has a mixed saddle-point equilibrium if and only if

Vm = max
z2Z

min
y2Y

y>Az = min
y2Y

max
z2Z

y>Az = Vm

If this condition holds, then
the saddle-point equilibrium corresponds to the mixed security strategies
(y, z) satisfying

y>Az  y>Az  y>Az 8y 2 Y, z 2 Z

Vm = Vm is the saddle point value.
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Computing mixed Nash equilibria

But we know from Nash theorem that a mixed Nash equilibrium always exists

) Vm = Vm and (i, j) are mixed Nash equilibria

The correspondence between mixed security strategies and mixed Nash
equilibria is the fundamental reason why zero-sum games are important

We can compute mixed Nash equilibria from the security strategies
It’s just a Linear Program! (compare to non-zero-sum games)
All Nash equilibria have the same value (! value of the game)
All Nash equilibria are admissible
All Nash equilibria are interchangeable

Competence
Compare and contrast zero-sum and non-zero-sum games in terms of theoretical
results and computational methods.
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Historical note

We proved that Vm = Vm using Nash Theorem.

Historically, things went the other way around.

John von Neumann first proved the Minimax
Theorem in 1928 for zero-sum games.
Von Neumann gave several proofs of this result,
some geometric (supporting hyperplane theorem)
proofs and some based on Brouwer’s fixed point
theorem.

He later wrote:
“As far as I can see, there could be no the-
ory of games . . . without that theorem . . . I
thought there was nothing worth publishing
until the Minimax Theorem was proved.”

John von Neumann
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Historical note

In 1949, John Nash generalized von Neumann’s
result to nonzero-sum games with any number of
players.

His proof uses the fixed point theorem, is just one
page long, and it won him the Nobel prize.

Apparently when Nash explained his result to von
Neumann, the latter said:

“That’s trivial, you know. That’s just a fixed
point theorem.”

Von Neumann’s original minimax theorem is easier (if you consider the complexity
of fixed-point theorems in John Nash’s proof... Kakutani’s fixed point theorem was
proved in 1941!). See Lecture 5 of

An Introductory Course in Noncooperative Game Theory
João P. Hespanha
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Summary

Definition of zero-sum games (ZSGs)
(Pure) security levels and strategies in a ZSG
Min-Max property of pure security levels in a ZSG
(Pure) Nash equilibria in a ZSG
Theorem: Pure Nash equilibria and security levels in a ZSG
Value of a ZSG
Order interchangeability of Nash equilibria in a ZSG
Mixed security levels and strategies in a ZSG
Computing mixed security levels in a ZSG
Min-Max property of mixed security levels in a ZSG
Mixed Nash equilibria in a ZSG
Theorem: Mixed Nash equilibria and mixed security strategies in a ZSG
Computing mixed Nash equilibria in a ZSG
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