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Course topics

Static games
Zero-sum games
Potential games
Dynamic games, dynamic programming principle
Dynamic games, dynamic programming for games

@A Dynamic games, linear quadratic games, Markov games
Convex games, Nash equilibria characterization

B Convex games, Nash equilibria computation

B Auctions

Bayesian games

Learning in games

=

Extensive form games

—

Feedback games in extensive form

—

Final project presentations

=
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Plan of today’s lecture

Game play: custom game
Math review: See hand-written notes in class

» fill in the gap: proof of existence of mixed strategy NE in finite action games
> review: results on linear program basic solution
» fill in the gap: proof of completely mixed NE computation from last lecture

Project information

m Zero-sum games
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Review Exercise: Custom Declaration

You are arriving at Geneva international airport
and have brought some food from abroad

m Declaring the food costs 10 CHF
m The fine for not declaring it is 20 CHF

m Customs can stop you, but that has a
personnel cost of 1 CHF.

_ St , no Pc/rt
Exercise 2 2 achens onlg, we con wse (Y
E Is there a pure strategy Nash Equilibfium? N o

What are the security strategies for each player?
How would you compute a mixed strategy Nash Equillrium?
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Two-Person Zero-Sum Games

Zero-sum games
Two-person games in which the two players have opposite payoffs.

Static game with B = —A (we only indicate one matrix, A)

Column player’s actions

Payoff matrix

g1 @  aw ain = Row player loses a;
? ax axn asn = Column player gains a;
§_ m Row player minimizes outcome V
é m Column player maximizes outcome V
am ame amn
Why?

m Zero-sum games model a large number of practical applications: robust
optimization and control, chess, tic-tac-toe

= Nash equilibria in zero-sum games have many useful properties
= Nash equilibria in zero-sum games are much easier to compute
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Examples we have seen

Consider only one round of the game.

) Rock Paper
Rock
A= Paper
Scissors
Matching pennies
Head
Tail

Scissors
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Security levels and strategies

The security level of P; (minimizer) is defined by

V:i= min™ max ajj
ie{1..../1} je{1,...,7f}
n

V is the best possible outcome (lowest number) that Py can guarantee himself, for
any adversarial choice P, can make.

The security strategy of P; (minimizer) is defined by

i € argmin max  ajj
ie{t..p ie{hm,r’}
n
m

Exact same definition as in general hon-zero-sum games.
Remember: security levels do not depend on the other players’ outcome matrix.

However, this time the other player is truly adversarial (zero-sum)!
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Security levels and strategies

The security level of P, (maximizer) is defined by

V.= max min ajj
je{t,..., n} ie{1,....m}

V is the best possible outcome (highest number) that P, can guarantee himself,
for any adversarial choice Py can make.

The security strategy of P, (maximizer) is defined by
Le arg/e{rﬂ??}f} ,G{T??ﬂ i
n m

Just a different formulation of the same definition, for B = —A
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Security levels and strategies

Min-Max Property
For every finite matrix A, the following properties hold:
(i) Security levels are well defined and unique
(ii) Both players have security strategies (not necessarily unique)
(iii) The security levels always satisfy

P, P

V:= max min g < V:= min max _ aj
je{l,..., n} ie{1,..., m} ie{l,..., m} je{1,..., n}

9/34



Proof: V < V for all matrices A

We will show a more general statement: Let Y CR"and Z c R", J: Y x Z = R.

Min-Max Property for General functions

The sup-inf inequality holds: sup,. - infycy J(y,2) < infycy sup,c = J(y, 2).
Furthermore, if ), Z are closed and bounded and J is continuous then

maxzecz minyey J(¥,2) < minyey maxzez J(y, 2).

Proof

TN

=

=

lw‘?‘ a-(a/'Z) é_ ZCU/Z) VUIZ'
1€Y
W Ty, y € so (qiz) ¥y
j‘:jaa? ugaa
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267 yey d (s zsezlf J 2 ¥ ‘qv;hplrgcéfz)
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Exercise: Rock-Paper-Scissors

m What are the security levels of the
Rock-Paper-Scissors game?

= What is the gap between V and V?
m What are the security strategies?

m What is the outcome if both players
play a security strategy?

= Given a matrix A, how do you
compute V and V in Matlab?

Scissors

beats paper

Vover = min(max(A’))

Vunder = max(min(A))
Competence

Evaluate fundamental quantities in a given game and verify that they are
compatible with what the theory says.
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Example: Feedback Control

An engineer must choose a proportional feedback controller gain, K, for a system
made with components specified to coarse tolerances. For such a resistor R in the
system, the resulting feedback performance metric (to be minimized) is as shown:
Nature
R =3.5Q R =4.0Q R =4.5Q
Ko =1 6.0 4.0 3.0
5.0 4.0 3.5
Kp = 10 +00 20.0 2.0

Engineer
>
Il
(4]

= Whatare V., V, i, ?

= What is the interpretation in control design terms?

—_—

= S : = 2 ((CP:S\

/

Vv 1
V=25 J = R=35

—
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Nash equilibrium in zero-sum games

Given a zero-sum game described by the payoff matrix A, we say that the pair of
actions 4+ € I and 0j~ € X are a Nash Equilibrium if

apj- <ajp- Vi=1,....m (lowest outcome of column j*)
and
apq- > ap+; Yj=1,...,n (highest outcome of row i*)
Also known as saddle-point equilibrium W

We call V* := a;+;« the saddle-point value. g

o A
vie{l,....m}, Yje{l,...,n}
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Saddle-point and security levels
Not all zero-sum games have a saddle point (think of Rock-Paper-Scissors).
We can exactly characterize the zero-sum games that have a saddle point.

Theorem (Saddle-point and security levels)
A zero-sum game defined by A has a saddle-point equilibrium if and only if

Py Py

and V =V is the saddle-point value.

Moreover, if i and J are security strategies, then (7, J) is a saddle-point equilibrium.

Extremely simple Matlab test: max(min(A)) == min(max(A’))
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Proof: Saddle-point and security levels

We will break it into 2 parts, “=" and “<”

Start with “<”: if a (Nash equilibrium) saddle-point exists, then V = V.

(if) 0
- . _~ _~ -
m By definition of a saddle-point, a;; < aj«j+ < ay~,Vi,j holds

@j=j» = min & < max min & =V
~— i j i

U

max @j+j > min max a; =V
~ ] i i

al'*j* =
(ii

® We just showed that that V < V.
= From the previous proposition we have that V < V.
m Therefore it needs to be V = V.
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Proof: Saddle-point and security levels

Let us prove “=": if V = V, then a Nash equilibrium (saddle point) exists.

= Consider the two security strategies i and Jj. We have that

V = minmaxa; = maxa; and V = maxmina; = minay
i j /A i

m By definition of min and max, we have

V= mfin aj < a; < m]axa;j =V

m Because V = V, then these inequalities must be equalities:

min&; = a&; = maxa;.
i Ul ij i ij

Hence, ay < ay < ay, and (7,[) is a saddle point (Nash equilibrium).
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Value of a game and order interchangeability

Remember: security strategies are not unique
In the theorem we showed that if (7,[) is a saddle-point equilibrium then its value is
Vi=V=V.

Important consequences follow (only for zero-sum games!)

Value of a game

All saddle-point equilibria (Nash equilibria) of a zero-sum game have the same
value V*, which we denote as the value of the game.

Order interchangeability

If (it,j7) and (i3, 5 ) are saddle-point equilibria for a zero-sum game, then (if, j3)
and (i3, 1) are also saddle-point equilibria.

Eﬁ& \"' = D“;t'v é Q“OJ* < Q.’.‘g\ly
f 1J| 1 Ja } ‘1J,‘
Nut\\ e'ﬁUtﬂp LJ 0(;;)'; ‘"ﬁ a I\Sasl\ &%UJ LY::;



Mixed Strategies

Let us recall the definition of mixed strategies.

A mixed strategy for P, is a vector of numbers (y1, ..., ym) chosen from the simplex

M
Ld

y:{(Y1aYﬁ)Z}/r:1}’/ZO~/:1~M}
Mmoo =1
where y; is the probability with which Py selects actioni € {1,...,m}
A mixed strategy for P is a vector (z1, ..., z,) chosen from the simplex

n
Z:{(z17...,zn) : ;z,:17zj207j:1,...7n}

where Zz; is the probability with which P; selects actionj € {1,...,n}
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Mixed security strategies

= The mixed security level for P; (the minimizer) is defined as

Vi := min max yTAZ
yey zeZz

m n
= min max iZjajj
min max Y>> iz
i=1 j=1
= A mixed security strategy is any

y € argmin max y' Az
yey 2€Z2

Such a y minimizes the expected game value for the worst possible choice of
mixed strategy z that P, can make.
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Mixed security strategies

= The mixed security level for P, (maximizer) is defined as

V,, :=max min y'Az
zeZ yey

n m
= max min iZjajj
ma iy 3D ¥z
i=1 j=1
= A mixed security strategy is any

z € argmax min y' Az
zez YeY

Such a z maximizes the expected game value for the worst possible choice of
mixed strategy y that Py can make.
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Background for computing mixed security strategies
X2

If X is the simplex defined as follows:

n
X o= {XGR" : Zx,:1,x,20,i:1,...,n}
i=1

X3

Then these two optimization problems are equivalent

n
- .
Mmax &K _ max Xiai <~ ie{rPaXn} a
= max g
re X i=1

since the optimizer x™ lies at al vertex nf the simplex X. [ 9 e
1 . |

-\ e R “S_"

e RN , x cp" 8 Yr J"‘L” } SiL
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Computing the mixed security level

m n
Vi = min max iZiajj
m = M e E E Yizjaj

i=1 j=1

m Do you have to search the max in the entire simplex Z?

forafixedy — max ZZ vizjaj = maxz viaj
i=1 j=1
&, ..

In other words, the worst case is always a pure strategy of Player 2.

How can we use the above to compute V, and y?
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Computing the mixed security level via LP

m n
Vm = min max iZi@jij = m|n max a
" yeY zez ZZ yizja; Zy’”

i=1 j=1

which is equivalent to the following linear program \\

min  Vn

¥:Vm yel
i J
subjectto > yiay < Vm, j=1,....n

i=1
yeY, VmeR
or in compact form
min  Vq
¥,V
subjectto A’y < Vi1
yeY, VmeR

where 1 = (1,...,1)" € R is the vector of ones.

™ a Vw\
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Computing the mixed security level via linear programming (LP)

% define the game
m= 3; n=2;
A = rand(m,n);

% evaluate security levels

Vover = min(max(A'));

Vunder = max(min(A));

Vover==Vunder % check if a pure NE exists

% set up the LP for finding the mixed NE

f = [zeros(m,1); 1]; % objective function

LB = [zeros(m,1); -inf]; % lower bound

UB = [ones(m,1);inf]; % upper bound

Aeq = [ones(m,1); 0]'; % equality constraints
beq = 1;

Ain = [A', -1xones(n,1)]; % inequality constraints
bin = zeros(n,1);

[yopt, V.m] = linprog(f,Ain,bin,Aeq,beq,LB,UB);

Exercise 1

Write the code for finding the mixed Nash equilibrium strategy of the second
player, z*. Show that alternatively, you can use the dual of the above linear
program to find z*.
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Min-Max Property

Min-Max Property

For every (finite) matrix A, the following properties hold:
m Average security levels are well defined and unique
m Both players have mixed security strategies (not necessarily unique)
m The average security levels always satisfy the following inequalities:

v < Va < Vi < 4
N7 - ~— =~
max min @ 7 max min y' Az | min max y Az MmN max &;

i ZEZ yey y yeY zEZ y T

The result is partly i
We will prove the figst and the second inequalities.

we Saw n chidy 1o
no W

uitive, and can be pfoven similarly to the previous results.
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Min-Max Property Proof (1)

Let us prove that

v < V.,
~—~
max min aj oy T
¢ N dj  max min y Az
I ! ZEZ yEY

We saw that the min of a linear function over a simplex is always achieved at one
of the vertices (corners), and therefore

zZEZ yeY zZEZ yeY zeZ ie{1,...,m}

m n n
max min y ' Az = max min E E ajyizi=max min g a;zj)
i=1 j=1 j=1

If we “restrict” the maximization from the simplex Z to only it’'s corners
(j € {1,...,n} pure strategies), we necessarily obtain a lower value. Therefore

zeZ ie{1,...,.m} je{1,...,n} ie{1,....m}

~— —
Stcvvtb ch_]

UL PZ " FUN :I’/J"QG/CM

n
max ~ min (Za,-,-z,-)z max min _ a;
=

which completes this part of the proof.



Min-Max Property Proof (2)

How would you verify the next inequality? V. < Vi ?
~—~
. T . TAZ
me iy v Az D e Y

to\\gu\)l Rom S"\o’.( (o
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Mixed Strategy Equilibrium

Mixed Nash equilibrium for zero-sum games
A pair of strategies (y*,z*) € Y x Z is called a mixed-strategy saddle-point
equilibrium (or Nash equilibrium) if
y*TAz* <y"Az*, Vy el (the minimizer)
y*TAz* >y*TAz, Vze Z (the maximizer)
y*TAz* is called the saddle point value.

N
V.7 3 Az ¢

et

Az' < '_’3\‘&2, VJU
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Mixed Saddle Point vs. Security Levels

We proved earlier that in the case of pure strategies a pure saddle-point
equilibrium exists if and only if V = V.

An analogous result holds for mixed strategies, and can be proved in a very
similar fashion.

Theorem (Mixed saddle point and mixed security levels)
A zero-sum game has a mixed saddle-point equilibrium if and only if

V. = max min y'Az= min max y Az = Vn,
=M zez yey y YEY 2€Z y

If this condition holds, then

m the saddle-point equilibrium corresponds to the mixed security strategies
(v, z) satisfying

Yy Az<y'Az<y'Az Vyey,zez
m V=V, is the saddle point value.
i

Vo ovalme 4 e 9@m
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Computing mixed Nash equilibria

But we know from Nash theorem that a mixed Nash equilibrium always exists
=V, =Vn and (i) are mixed Nash equilibria

The correspondence between mixed security strategies and mixed Nash
equilibria is the fundamental reason why zero-sum games are important

m We can compute mixed Nash equilibria from the security strategies
m |t's just a Linear Program! (compare to non-zero-sum games)
= All Nash equilibria have the same value (— value of the game) Ve "6
= All Nash equilibria are admissible
e 1§

= All Nash equilibria are interchangeable

Competence

Compare and contrast zero-sum and non-zero-sum games in terms of theoretical
results and computational methods.
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Historical note

We proved that V,, = Vi using Nash Theorem.
Historically, things went the other way around.

John von Neumann first proved the Minimax
Theorem in 1928 for zero-sum games.

Von Neumann gave several proofs of this result,
some geometric (supporting hyperplane theorem)
proofs and some based on Brouwer’s fixed point
theorem.

He later wrote:
“As far as | can see, there could be no the-
ory of games ... without that theorem ... |
thought there was nothing worth publishing
until the Minimax Theorem was proved.”

John von Neumann
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Historical note

In 1949, John Nash generalized von Neumann’s
result to nonzero-sum games with any number of
players.

His proof uses the fixed point theorem, is just one
page long, and it won him the Nobel prize.

Apparently when Nash explained his result to von
Neumann, the latter said:
“That's trivial, you know. That's just a fixed
point theorem.”

Von Neumann’s original minimax theorem is easier (if you consider the complexity
of fixed-point theorems in John Nash’s proof... Kakutani’s fixed point theorem was
proved in 1941!). See Lecture 5 of

An Introductory Course in Noncooperative Game Theory
Jodo P. Hespanha
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Summary

m Definition of zero-sum games (ZSGs)
m (Pure) security levels and strategies in a ZSG
= Min-Max property of pure security levels in a ZSG
m (Pure) Nash equilibria in a ZSG
= Theorem: Pure Nash equilibria and security levels in a ZSG
m Value of a ZSG
= Order interchangeability of Nash equilibria in a ZSG
Mixed security levels and strategies in a ZSG
Computing mixed security levels in a ZSG

Mixed Nash equilibria in a ZSG

|

|

= Min-Max property of mixed security levels in a ZSG

u

m Theorem: Mixed Nash equilibria and mixed security strategies in a ZSG

m Computing mixed Nash equilibria in a ZSG
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